翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

superposition principle : ウィキペディア英語版
superposition principle

In physics and systems theory, the superposition principle,〔The Penguin Dictionary of Physics, ed. Valerie Illingworth, 1991, Penguin Books, London〕 also known as superposition property, states that, for all linear systems, the net response at a given place and time caused by two or more stimuli is the sum of the responses which would have been caused by each stimulus individually. So that if input ''A'' produces response ''X'' and input ''B'' produces response ''Y'' then input (''A'' + ''B'') produces response (''X'' + ''Y'').
The homogeneity and additivity properties together are called the superposition principle. A linear function is one that satisfies the properties of superposition. Which is defined as
:F(x_1+x_2)=F(x_1)+F(x_2) \,Additivity
:F(a x)=a F(x) \, Homogeneity
:for scalar .
This principle has many applications in physics and engineering because many physical systems can be modeled as linear systems. For example, a beam can be modeled as a linear system where the input stimulus is the load on the beam and the output response is the deflection of the beam. The importance of linear systems is that they are easier to analyze mathematically; there is a large body of mathematical techniques, frequency domain linear transform methods such as Fourier, Laplace transforms, and linear operator theory, that are applicable. Because physical systems are generally only approximately linear, the superposition principle is only an approximation of the true physical behaviour.
The superposition principle applies to ''any'' linear system, including algebraic equations, linear differential equations, and systems of equations of those forms. The stimuli and responses could be numbers, functions, vectors, vector fields, time-varying signals, or any other object which satisfies certain axioms. Note that when vectors or vector fields are involved, a superposition is interpreted as a vector sum.
==Relation to Fourier analysis and similar methods==
By writing a very general stimulus (in a linear system) as the superposition of stimuli of a specific, simple form, often the response becomes easier to compute.
For example, in Fourier analysis, the stimulus is written as the superposition of infinitely many sinusoids. Due to the superposition principle, each of these sinusoids can be analyzed separately, and its individual response can be computed. (The response is itself a sinusoid, with the same frequency as the stimulus, but generally a different amplitude and phase.) According to the superposition principle, the response to the original stimulus is the sum (or integral) of all the individual sinusoidal responses.
As another common example, in Green's function analysis, the stimulus is written as the superposition of infinitely many impulse functions, and the response is then a superposition of impulse responses.
Fourier analysis is particularly common for waves. For example, in electromagnetic theory, ordinary light is described as a superposition of plane waves (waves of fixed frequency, polarization, and direction). As long as the superposition principle holds (which is often but not always; see nonlinear optics), the behavior of any light wave can be understood as a superposition of the behavior of these simpler plane waves.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「superposition principle」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.